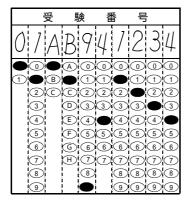
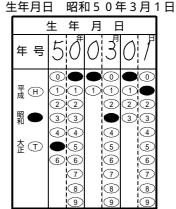
注意事項

- 1 試験開始時刻 14時20分
- 2 試験種別終了時刻


試 験 科 目	科目数	終了時刻
「電気通信システム」のみ	1 科目	15時40分
「専門的能力」のみ	1 科目	1 6 時 0 0 分
「専門的能力」及び「電気通信システム」	2 科目	1 7 時 2 0 分


3 試験種別と試験科目別の問題(解答)数及び試験問題ページ

試 験 種 別	試験科目	申請した専門分野		試験問題				
	二 一	中間した守门刀到	第1問	第2問	第3問	第4問	第5問	ページ
	専門的能力	伝 送	8	8	8	8	8	伝1~伝14
伝送交換主任技術者		無線	8	8	8	8	8	伝15~伝29
		交 換	8	8	8	8	8	伝30~伝43
		データ通信	8	8	8	8	8	伝44~伝57
		通信電力	8	8	8	8	8	伝58~伝73
	電気通信	専門分野に	即1から即20十万		2.0		1=74 1=77	
	システム	かかわらず共通		問1から問20まで		2 0		伝74~伝77

- 4 受験番号等の記入とマークの仕方
- (1) マークシート(解答用紙)にあなたの受験番号、生年月日及び氏名をそれぞれ該当枠に記入してください。
- (2) 受験番号及び生年月日に該当する箇所を、それぞれマークしてください。
- (3) 生年月日の欄は、年号をマークし、生年月日に1けたの数字がある場合、十の位のけたの「0」もマークしてください。

[記入例] 受験番号 01AB941234

- 5 答案作成上の注意
- (1) マークシート(解答用紙)は1枚で、2科目の解答ができます。

「専門的能力」は薄紫色(左欄)、「電気通信システム」は青色(右欄)です。

- (2) 解答は試験科目の解答欄の正解として選んだ番号マーク枠を、黒の鉛筆(HB又はB)で濃く塗りつぶしてください。 ボールペン、万年筆などでマークした場合は、採点されませんので、使用しないでください。
 - 一つの問いに対する解答は一つだけです。二つ以上マークした場合、その問いについては採点されません。 マークを訂正する場合は、プラスチック消しゴムで完全に消してください。
- (3) 免除科目がある場合は、その科目欄は記入しないでください。
- (4) 受験種別欄は、あなたが受験申請した伝送交換主任技術者(『伝 送 交 換』と略記)を で囲んでください。
- (5) 専門的能力欄は、『伝送・無線・交換・データ通信・通信電力』のうち、あなたが受験申請した専門的能力を で囲んでく ださい。
- 6 合格点及び問題に対する配点
- (1) 各科目の満点は100点で、合格点は60点以上です。
- (2) 各問題の配点は、設問文の末尾に記載してあります。
- 7 登録商標などに関する事項
- (1) 試験問題に記載されている会社名又は製品名などは、それぞれ、各社の商標または登録商標です。
- (2) 試験問題では、®及び™を明記していません。
- (3) 試験問題の文中及び図中などで使用しているデータは、すべて架空のものです。

マークシート(解答用紙)は、絶対に折り曲げたり、汚したりしないでください。

《次ページ以降は試験問題です。試験開始の合図があるまで、開かないでください。

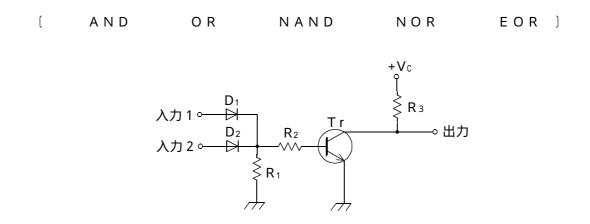
受験番号					
(控 え)					

			試	験	種	別			試	験	科	目
伝	送	交	換	主	任	技	術	者	電気	通信	シス	、テム

(参考) 試験問題、図中の抵抗器の表記は、旧図記号を用いています。

新図記号	旧図記号	

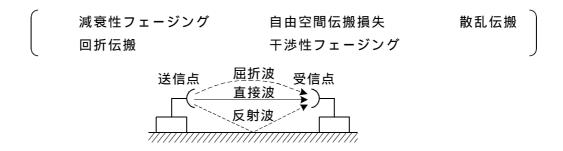
また、トランジスタについても、旧図記号を用いています。


次の問 1 から問 2 0 までについて、それぞれ()内に最も適したものを、各問の ~ の中から一つ選び、その番号を記せ。 $(5 \, \text{点} \times 2 \, 0 = 1 \, 0 \, 0 \, \text{点})$

問 1 静電容量を $0.5[\mu F]$ から $2.0[\mu F]$ まで変化させることができる可変容量コンデンサがある。コンデンサの容量を $1.0[\mu F]$ にしてその端子電圧が 2,000[V] になるまで充電した後、容量を $0.8[\mu F]$ にしたとき、このコンデンサに蓄えられている静電エネルギー[J] とコンデンサの端子電圧[V] は、それぞれ()となる。

問2 図に示す回路において、端子A、B間の合成抵抗は、()〔〕である。

問3 図に示す論理回路を入出力とも正論理で使用するとき、この回路は、()回路として動作する。



問 4 A 及び B を <i>l</i> は、()[するとき、論理式(: = A • (A + B) + B • (A + I	3)で示される回路
(ANDO	R NOT	NAN	D NO	OR]
		いては、複数の搬送			
(PCI	ISA	FM C	ЭΜТ	A M)
問 6 内部抵抗が 1 0 0 [m A] の		大目盛が10〔m A には、()〔			定可能電流が最大
(0.09	0.11 0	. 2 2	0.90	9.09)
	設計値が 2 5 [d B]	質を表す尺度の一つ 以上必要とされる この伝送路に許容	モデムにおいて	て、伝送路の受	信端での信号レベ
(- 6 0	- 3 5 - 1	5 + 1	1 5 +	3 5)
ョット雑音な	どの基本雑音のほど		票本化雑音、過貨	負荷雑音などの	して、熱雑音、シ 各種の雑音がある。 語音は、()で
	熱雑音 標本化絮	準漏話 誰音 過負荷	雑音シ	/ョット雑音	
	するために用いられ	どの信号のように機 れる予測符号化では 入力標本値の(は、一般に、過ぎ	去の入力標本値	から次の標本値を
(差 異	積 和	共通部分	ランレン	ソグス 〕
問10 パケット交割報転送を行う(1ックに分割して	て組み立てたパ	ケットの単位で情
	蓄積交 即時交	換 プロト 換 回線交	コル変換 換	電信交換	

いわれる	3.					
(A) (B) (C)	ある呼が生		「同じである。 その前に生起した 「が生起する確率は			
(完 了	閉そく	待ち合わせ	ランダム	あふれ 〕	
)におけるネットワ)管理の五つが		要素には、構成管	理、障
		運 用 トラヒッ	保 全・ク セキュ	アドレス リティ		
			'ピュータ名、企業 †応させるデータベ		国別コードなどで である。	構成さ
(TCP/	IP UD	P NIC	SMTP	DNS)
問14 番号記	十画において、	())は、番	号ポータビリティ	といわれている。		
	移動体通信 コードレ 契約電気		tのこと		使用できること	
号を受信		発信側の端末に対			未の送出する端末とにより送出する	
		起動信号 応答信号	呼出信号 起動完了信	選択信	号	
			∳技術の一つである :簡略化して利用し		ット交換網におけ	る誤り
		データグラム S T M	C S M A .	/ CD 回線	泉交換	

問11 通信を行う目的で生ずる呼のうち、次の $ar{ar{ar{a}}} \sim ar{ar{ar{C}}}$ に示す三つの条件を満足する呼は、()呼と

問17 マイクロ波の伝搬において、図に示すように、同一の送信点から発射された電波が受信点に到達するときには、直接波のほかに反射波など位相の異なる受信波が到達し、合成された受信波の振幅・位相周波数特性が変動する。この現象は、()といわれる。

問18 ステップインデックス(SI)形多モード、グレーデッドインデックス(GI)形多モード及びシングルモード(SM)の3種類の同じ長さの光ファイバにおいて、伝送帯域について比較すると ()の順で狭くなる。

問19 スイッチングレギュレータは、トランジスタをD級増幅領域で動作させるためトランジスタの損失を低減でき、効率が高いなどの利点が挙げられるが、通信機器用の電源として用いる場合は、シリーズレギュレータと比較して応答速度が遅い、())などの点に配慮する必要がある。

出力電圧が可変にならない
入出力間の絶縁をすることが不可能
高周波雑音を発生する
小型化が図れないため電源設備が大きくなる
出力電圧の偏差検出回路を持たないため安定
した出力電圧を得にくい

問20 光ファイバは、中心部のコアと外周部のクラッドの屈折率の差により、光をコア内に全反射させながら伝搬するが、この屈折率の差は、製造段階において、石英ガラスなどの主材に添加する ()の種類や量により調整される。

プリフォーム テンションメンバ フェルール OH基 ドーパント